Utilization of Selenium-directed [2 + 2] Cycloadditions: Concise Synthesis of (\pm)-Fragranol

Shoko Yamazaki,* Hiroyuki Fujitsuka, Fukumi Takara and Takashi Inoue Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630, Japan

Abstract

The reaction of 2-(phenylseleno) prop-1-ene 1 and methyl vinyl ketone 2 in the presence of EtAICl_{2} gave the [2+2] cycloadducts $\mathbf{3 a}$ and $\mathbf{3 b}$. A radical substitution of the adducts $\mathbf{3 a}$ and $\mathbf{3 b}$ with allyltributyltin gave the allylated cyclobutane product, which was transformed into the cyclobutane natural product, (\pm)-fragranol. Stereoselective radical substitution using the ethylene glycol ketals of compounds 3a and 3b was also achieved.

Heteroatoms such as silicon, sulfur and tin have been extensively used recently as effective directing atoms in various kinds of synthetic reactions to control chemo-, regio- and stereoselectivities. ${ }^{1}$ Although selenium has been recognized to be versatile for conversion of functional groups, ${ }^{2}$ the use of selenium as a directing atom in organic synthesis is limited. ${ }^{3}$

Recently, we reported selenium-directed stereoselective $[2+2]$ cycloaddition of silyl vinyl selenides promoted by Lewis acids. ${ }^{4}$ The phenylseleno group proved to be an excellent directing group for $[2+2]$ cycloadditions and the resulting selenium- and silyl-substituted cycloadducts were demonstrated to be synthetically useful by a formal synthesis of (\pm)junionone. ${ }^{4}$ For further applications, we have investigated the $[2+2]$ cycloadducts of alkyl vinyl selenides and the transformation of the selenium-substituted cycloadducts into the cyclobutane natural product (\pm)-fragranol 8a, which is one of the constituents of Artemisia fragrans willd. ${ }^{5}$ In this transformation, one of the versatile synthetic utilities of selenium, generation of a carbon-centred radical, has been utilized.

Aluminium-promoted $[2+2]$ Cycloadditions.--Phenylseleno groups have been successfully used for radical carbon-carbon bond formation, ${ }^{6}$ and selenium-substituted cyclobutanes can generate a radical on a cyclobutane ring. Hence, 2-acetyl-1-methyl-1-phenylselenocyclobutane 3 could be a versatile key intermediate for the synthesis of fragranol. In our previous report, attempted [$2+2$] cycloaddition of 2-phenylselenoprop-1-ene 1 and the methyl vinyl ketone $\mathbf{2}$ in the presence of SnCl_{4} was unsuccessful. ${ }^{4}$ Various kinds of Lewis acids were subsequently investigated, and we have now found that reaction of the propene 1 and excess of ketone 2 (3 mol equiv.) in the presence of EtAlCl_{2} (0.9 mol equiv.) gave diastereoisomers $\mathbf{3 a} / \mathbf{b}$ (1.4:1) in 58% yield. Reaction of the propene 1 and excess of ketone 2 (3 mol equiv.) in the presence of AlCl_{3} (1.0 mol equiv.) also gave products $3 \mathbf{3} / \mathbf{b}$ ($1.5: 1$) in 44% yield. The two stereoisomers $\mathbf{3 a}$ and $\mathbf{3 b}$ were conveniently separated by column chromatography, and their relative stereochemistry was determined by 2D nuclear Overhauser (2D-NOESY) spectroscopy. In the major isomer 3a, NOEs were observed between H^{a} ($\delta 3.30-3.34, \mathrm{~m}$) and $\mathrm{H}^{\mathrm{c}}(\delta 7.66-7.68, \mathrm{~m})$ and not between H^{a} and $\mathbf{H}^{\mathrm{b}}(\delta 1.45, \mathrm{~s})$. On the other hand, in the minor isomer $\mathbf{3 b}$, NOEs were observed between $\mathbf{H}^{a^{\prime}}(\delta 3.16-3.20, \mathrm{~m})$ and $\mathbf{H}^{b^{\prime}}(\delta$ 1.76 , s), but not between $\mathrm{H}^{\mathrm{a}^{\prime}}$ and $\mathrm{H}^{\mathrm{c}^{\prime}}(\delta 7.58-7.62, \mathrm{~m})$ (see numbering of H -atoms in Scheme 1). Therefore, the stereochemistry of the major isomer 3a was assigned as trans and that of the minor isomer 3b was cis, with respect to the relationship between the phenylseleno and acetyl groups. Thus, this $[2+2]$ cycloaddition is regioselective but relatively nonstereoselective, and slightly favoured to give the opposite diastereoisomer to that obtained by the $\mathrm{SnCl}_{4}, \mathrm{AlCl}_{3}$

Scheme 1 Reagent and yield: i, $\operatorname{EtAlCl}_{2}(58 \%)$
or EtAlCl_{2}-promoted [$2+2$] cycloaddition of 1-(phenylseleno)-1-(trimethylsilyl)ethene 4 and ketone 2. ${ }^{4}$

4
The observed regioselectivity with respect to selenium and the stereochemical outcome may be explained as follows. \dagger Scheme 2 outlines the proposed course of the $[2+2]$ cycloaddition process. In the first step, the nucleophilic vinyl selenide 1 attacks the electrophilic olefin 2 activated by a Lewis acid $\left(\mathrm{AlEtCl}_{2}\right.$ or $\left.\mathrm{AlCl}_{3}\right)$ to give betaine intermediate \mathbf{x} or \mathbf{y}. The secondary-orbital interaction which was considered in the SnCl_{4}-promoted $[2+2]$ reaction of the silyl analogue $\mathbf{4}^{4}$ may occur in this first conjugate addition step (Fig. 1). The low stereoselectivity of the [$2+2$] cycloaddition of compounds 1 and 2 and slightly opposite preference to that of the silyl analogue $\mathbf{4}$ and ketone $\mathbf{2}$ is probably due to the smaller size of a methyl group compared with that of a trimethylsilyl group. Although a boat-like transition state was postulated in the $[2+2]$ cycloaddition of the silyl analogue 4 because of the steric effect of the bulky SiMe_{3} group, both a chair-like and a boat-like transition state would exist in this case because the steric hindrance between two Me groups of substrates 1 and 2 in a chair-like transition state is not so large compared with that of the silyl analogue 4 and ketone 2 (Fig. 2).

The low stereoselectivity of the $[2+2]$ cycloaddition of compounds 1 and 2 was not troublesome since the phenylseleno

[^0]

Scheme 2 Reagents: i, $\mathrm{AlX}_{3}\left(\mathrm{X}_{3}=\mathrm{EtCl}_{2}\right.$ or $\left.\mathrm{Cl}_{3}\right)$
group was planned to function as a latent radical for the synthesis of fragranol.

Synthesis of (\pm)-Fragranol.-The use of allyltin reagents to effect allyl transfer by a radical chain process is now well established. ${ }^{1,6,9}$ A radical-substitution reaction of the phenylseleno group for stereoisomers 3a and 3b obtained as described above was attempted using allyltributyltin. When a mixture of compound 3a, allylbutyltin (3 mol equiv.) and azoisobutyronitrile (AIBN) in benzene was heated at $80^{\circ} \mathrm{C}$ for 4 h , allylated products 5a/b (2:1), which could not be separated, were obtained in 86% yield. The same product mixture was obtained from the other diastereoisomer $\mathbf{3 b}$ in 58% yield. The $2: 1$ mixture of compounds $\mathbf{5 a} / \mathbf{5 b}$ obtained from selenides 3a and $\mathbf{3 b}$ was transformed by the following sequence (Scheme 3). Oxidation of alkenes $5 \mathrm{a} / \mathrm{b}$ by $\mathrm{NaIO}_{4}-\mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ and a neutral work-up gave acids $6 \mathbf{a} / \mathbf{b}$ ($2: 1$) in 93% yield. Methylenation of the carbonyl group of acids $\mathbf{6 a} / \mathbf{b}$ by use of the modified Nozaki reagent, $\mathrm{Zn}-\mathrm{CH}_{2} \mathrm{Br}_{2}-\mathrm{TiCl}_{4},{ }^{10}$ gave $7 \mathbf{a} / \mathrm{b}$ ($2: 1$) in 98% yield. The methylenated products $7 \mathbf{a} / \mathbf{b}$ were reduced with LiAlH_{4} in diethyl ether to give a $2: 1$ mixture of (\pm)-fragranol 8a and its diastereoisomer (\pm)-grandisol 8b, respectively. ${ }^{11}$ The spectral data of the mixture containing the alcohols 8 a and 8 b are in accord with the reported data. Fragranol 8a was isolated after column chromatography. Separation of the diastereoisomers $\mathbf{5 a} / \mathbf{b}, \mathbf{6 a} / \mathrm{b}$ and $7 \mathbf{a} / \mathrm{b}$ was not possible by column chromatography.

Next, in order to obtain stereoselectivity in the radical substitution step, ketals of compounds $\mathbf{3 a}$ and $\mathbf{3 b}$ were examined (Scheme 4). Ketalization of compound 3a with ethylene glycol in the presence of p-TsOH in refluxing benzene for 4.5 h gave a $\sim 4: 1$ mixture of trans and cis ketals $9 \mathbf{a} / \mathbf{b}$ in 87% yield. Ketalization of the stereoisomer $\mathbf{3 b}$ with ethylene glycol also gave a $\sim 4: 1$ mixture of ketals $9 \mathbf{a} / \mathrm{b}$ in 80% yield. The stereochemistry of ketals $9 \mathbf{9} / \mathbf{b}$ obtained under these thermodynamic conditions was assigned by steric considerations. When the mixture of ketals $9 \mathbf{9} / \mathbf{b}$ (4:1), allyltributyltin (3 mol equiv.) and AIBN in benzene was heated at $80^{\circ} \mathrm{C}$ for 4 h ,

(2:1)

(2:1)

Scheme 3 Reagents and yields: i, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{SnBu}_{3}$, AIBN $(86 \%$ from 3a, 58% from 3b); ii, $\mathrm{NaIO}_{4}, \mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}(93 \%)$; iii, $\mathrm{Zn}-\mathrm{CH}_{2} \mathrm{Br}_{2}-$ $\mathrm{TiCl}_{4}(98 \%)$; iv, $\mathrm{LiAlH}_{4}(65 \%)$

Fig. 1 Frontier orbital coefficients of the HOMO of selenide 1 and LUMO of AlCl_{3}-coordinated methyl vinyl ketone 2 are shown. These coefficients are of PM3 ${ }^{7}$ in MOPAC ver. $6 .^{8}(a)$ The HOMO \longrightarrow LUMO charge-transfer interaction in the chair-like alignment. (b) The HOMO \longrightarrow LUMO charge-transfer interaction in the boat-like alignment. The boat-like alignment is unfavourable because of $\mathrm{C}^{2}-\mathrm{C}^{3}$ orbital cancellation.
allylated product $10 \mathbf{a} / \mathbf{b}$ (diastereoisomeric ratio 9:1) was obtained in 48% yield. Although the product yield decreased compared with that from direct allylation of seleno ketone 3a or 3b by ketalic protection, compounds $\mathbf{1 0 a} / \mathbf{b}$ were obtained with high stereoselectivity. Thus, the generated four-membered

Fig. 2 Each reactant geometry is that optimized (PM3) at the isolated state. When the $\mathrm{Se} \cdots \mathrm{C}^{2^{\prime}}$ distance is set to $3.0 \AA$, a $\mathrm{C}^{1} \cdots \mathrm{C}^{4}$ distance of $\sim 3.0 \AA$ is obtained between 1 and $2+\mathrm{AlCl}_{3}$ and between 4 and $2+$ AlCl_{3}. These molecular-model figures demonstrate that steric hindrance between the two methyl groups of 1 and 2 in a chair-like transition state is not as large as that between the Me of 2 and the $\mathrm{Me}_{3} \mathrm{Si}$ group of 4 .
cyclic radical from seleno ketals $9 \mathbf{a} / \mathbf{b}$ reacted with allyltributyltin from the anti side of the ketal group and the attempted stereoselective radical substitution was successful. The ketal group of compounds of $10 a / b(9: 1)$ was removed by oxidative cleavage $\left(\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{BF}_{4}{ }^{-}\right)^{12}$ to give ketones $5 \mathrm{a} / \mathrm{b}(9: 1)$ in 70% yield. Ketones $5 \mathbf{a} / \mathbf{b}(9: 1)$ were transformed into (\pm)-fragranol 8 Ba via the intermediates with high diastereoisomeric ratios $(9: 1)$ by the method already described (Scheme 4).

Experimental

General Methods.-IR spectra were recorded with a JASCO FT-IR 5000 spectrophotometer. NMR spectra were recorded in CDCl_{3} on a JEOL FX-200 or JEOL JNM-GSX400 spectrometer. For the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra, $\mathrm{Me}_{4} \mathrm{Si}$ was used as internal reference. J Values are given in Hz . Mass spectra were determined on a JMS-SX102 spectrometer. Gas chromatography (GLC) was performed on a Yanaco G6800 chromatograph fitted with a flame ionization detecter and using a fused silica capillary column (carrier gas $\mathrm{He}, 1.0 \mathrm{~kg} \mathrm{~cm}^{-2}$). All reactions were carried out under nitrogen.
r-2-Acetyl-c-1-methyl-t-1-(phenylseleno)cyclobutane 3a and r-2-Acetyl-t-2-methyl-c-2-(phenylseleno) cyclobutane 3b.-To a mixture of $0.95 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{EtAlCl}_{2}$ in hexane $\left(1.69 \mathrm{~cm}^{3}, 1.61\right.$

Scheme 4 Reagents and yields: i, ethylene glycol, p-TsOH (87% from 3a, 80% from 3b); ii, $\mathrm{CH}_{2}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SnBu}_{3}$, AIBN (48%); iii, $\mathrm{Ph}_{3} \mathrm{C}^{+}$ $\mathrm{BF}_{4}-(70 \%)$; iv, $\mathrm{NaIO}_{4}, \mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$; then $\mathrm{Zn}-\mathrm{CH}_{2} \mathrm{Br}_{2}-\mathrm{TiCl}_{4}$; then LiAlH_{4}
mmol) and dichloromethane ($3.4 \mathrm{~cm}^{3}$), cooled to $-78^{\circ} \mathrm{C}$, was added selenide 1 ($353 \mathrm{mg}, 1.78 \mathrm{mmol}$), followed by methyl vinyl ketone 2 ($374 \mathrm{mg}, 5.34 \mathrm{mmol}$). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was quenched by triethylamine ($1.51 \mathrm{~cm}^{3}, 10.9 \mathrm{mmol}$), and then saturated aq. NaHCO_{3} was added to the mixture, which was then extracted with dichloromethane and the organic phase was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by column chromatography over silica gel and eluted with hexane-diethyl ether (2:1) to give compound $3 \mathrm{a}(162 \mathrm{mg}, 34 \%)\left(R_{\mathrm{f}} 0.5\right)$ and compound $3 \mathrm{~b}(112 \mathrm{mg}$, 24%) ($R_{\mathrm{f}} 0.3$). Compound 3a: pale yellow oil; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.45(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.61-1.70(1 \mathrm{H}, \mathrm{m}), 1.78-1.86(1 \mathrm{H}, \mathrm{m})$, 2.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 2.27-2.38 ($2 \mathrm{H}, \mathrm{m}$), 3.30-3.34 ($1 \mathrm{H}, \mathrm{m}$, CHCOMe), 7.35-7.44 ($3 \mathrm{H}, \mathrm{m}, m-, p-\mathrm{H}$ of SePh) and 7.66-7.68 ($2 \mathrm{H}, \mathrm{m}, o-\mathrm{H}$ of SePh). NOEs were observed between $\delta 3.30-$ 3.34 and $\delta 7.66-7.68$ by 2D-NOESY; $\delta_{\mathrm{C}}\left(100.4 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $17.02\left(\mathrm{CH}_{2}\right), 23.03\left(\mathrm{CH}_{3}\right), 29.80(\mathrm{COMe}), 33.57\left(\mathrm{CH}_{2}\right), 48.60$ (C), $55.13(\mathrm{CH}), 128.0(\mathrm{C}), 129.0(\mathrm{CH}), 129.2(\mathrm{CH}), 137.7(\mathrm{CH})$ and 206.7 (C). ${ }^{13} \mathrm{C}$ Multiplicities were determined by ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ 2D homonuclear chemical-shift correlation (COSY) and intensive nuclei enhancement by polarization transfer (INEPT) spectroscopy; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 2960,1711,1437,1359,1181,743$ and 694; MS (70 eV) m / z (relative intensity) 268 (7), 157 (16), 111 (100) and 43 (63) (Found: M^{+}, 268.0354. Calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}^{80} \mathrm{Se}: \mathrm{M}, 268.0366$) (Found: M^{+}, 266.0354. Calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}^{78} \mathrm{Se}: \mathrm{M}, 266.0374$). Compound 3b: pale yellow oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.76(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.85-1.97(2 \mathrm{H}, \mathrm{m})$, $2.05-2.15(1 \mathrm{H}, \mathrm{m}), 2.11(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.42-2.52(1 \mathrm{H}, \mathrm{m})$, 3.16-3.20 (1 H, m, CHCOMe), 7.24-7.36 ($3 \mathrm{H}, \mathrm{m}, m-, p-\mathrm{H}$ of $\mathrm{SePh})$ and $7.58-7.62(2 \mathrm{H}, \mathrm{m}, o-\mathrm{H}$ of SePh$)$. NOEs were observed between $\delta 1.76$ and $\delta 3.16-3.20$ by 2D-NOESY; $\delta_{\mathrm{C}}\left(50.1 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.71\left(\mathrm{CH}_{2}\right), 29.42\left(\mathrm{CH}_{3}\right), 32.08\left(\mathrm{CH}_{3}\right)$, $33.57\left(\mathrm{CH}_{2}\right), 50.00(\mathrm{C}), 58.65(\mathrm{CH}), 127.5(\mathrm{C}), 128.6(\mathrm{CH}), 128.8$ $(\mathrm{CH}), 137.6(\mathrm{CH})$ and $206.6(\mathrm{C}) .{ }^{13} \mathrm{C}$ Multiplicities were determined by INEPT; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2954,1709,1437,1359$, 1183,743 and 694; MS (70 eV) m / z (rel. int.) 268 (24), 158 (14), $111(100)$ and 43 (42) (Found: $\mathrm{M}^{+}, 268.0350$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{OSe}: \mathrm{M}, 268.0366$).

Reaction of Compounds $\mathbf{1}$ and $\mathbf{2}$ in the Presence of AlCl_{3}.-To a mixture of $\mathrm{AlCl}_{3}(166 \mathrm{mg}, 1.25 \mathrm{mmol})$ and dichloromethane ($1 \mathrm{~cm}^{3}$), cooled to $-78^{\circ} \mathrm{C}$, was added a solution of selenide 1 ($197 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dichloromethane $\left(1 \mathrm{~cm}^{3}\right)$, followed by methyl vinyl ketone $2(211 \mathrm{mg}, 3.0 \mathrm{mmol})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h before being quenched by triethylamine $\left(0.261 \mathrm{~cm}^{3}, 1.88 \mathrm{mmol}\right)$, and then saturated aq. NaHCO_{3} was added to the mixture. The mixture was extracted
with dichloromethane and the organic phase was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under reduced pressure. The residue was purified by column chromatography over silica gel and eluted with hexane-diethyl ether (2:1) to give compounds $3 \mathrm{a}(71 \mathrm{mg}, 27 \%$) and $\mathbf{3 b}(46 \mathrm{mg}, 17 \%)$.
r-2-Acetyl-t- and c-1-allyl-1-methylcyclobutane 5a/b. ${ }^{13}$ - A mixture of compound 3 a ($157 \mathrm{mg}, 0.59 \mathrm{mmol}$), allyltributyltin ($586 \mathrm{mg}, 1.77 \mathrm{mmol}$) and AIBN ($21 \mathrm{mg}, 0.13 \mathrm{mmol}$) in benzene $\left(1.3 \mathrm{~cm}^{3}\right)$ was refluxed for 4 h . After cooling the solvent was removed under reduced pressure. The residue was purified by column chromatography over silica gel and eluted with hexanediethyl ether ($4: 1$) to give compounds $5 \mathbf{5} / \mathbf{b}$ (diastereoisomeric ratio 2:1 determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy) ($77 \mathrm{mg}, 86 \%$) ($R_{\mathrm{f}} 0.5$).
When compound $\mathbf{3 b}$ ($164 \mathrm{mg}, 0.615 \mathrm{mmol}$) was used as the starting material, compounds $5 \mathbf{a} / \mathrm{b}(2: 1)(54.5 \mathrm{mg}, 58 \%)$ were obtained. Compounds $5 \mathrm{5} / \mathrm{b}$: oil; b.p. $60-65^{\circ} \mathrm{C} / 19 \mathrm{mmHg}$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ peaks for $5 \mathrm{a}: 0.995(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.44-1.54$ ($1 \mathrm{H}, \mathrm{m}$), 1.66-1.91 ($2 \mathrm{H}, \mathrm{m}$), 2.04 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 2.24-2.39 (1 H, m), $2.30(2 \mathrm{H}, \mathrm{d}, J 7.3$), 3.06 ($1 \mathrm{H}, \mathrm{t}$-like, $J 8.3$), $5.12(1 \mathrm{H}, \mathrm{d}, J$ $15.9), 5.13(1 \mathrm{H}, \mathrm{d}, J 12.0)$ and $5.74-5.95(1 \mathrm{H}, \mathrm{m})$; peaks for $5 \mathbf{b}$: 1.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.61-2.02 ($3 \mathrm{H}, \mathrm{m}$), 2.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 2.12-2.23 ($3 \mathrm{H}, \mathrm{m}$), 2.98-3.06 ($1 \mathrm{H}, \mathrm{m}$), 4.99-5.10 $(2 \mathrm{H}, \mathrm{m})$ and $5.58-5.75(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(50.1 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ peaks for $5 \mathrm{a}: 16.08$, $21.25,29.51,30.21,43.32,47.52,53.39,117.83,134.4$ and 208.5; peaks for 5 b: $15.93,27.84,29.10,30.70,39.96,43.23,56.11$, 117.77, 134.0 and 208.5; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2958,1707,1361,1180$ and 917; MS (70 eV) m / z (rel. int.) 152 (8), 111 (58), 110 (55), 94 (63), 82 (70), 71 (84), 67 (100) and 43 (83) (Found: C, 78.8; H, 10.7%. $\mathrm{M}^{+}, 152.1213$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}: \mathrm{M}, 152.1201$. C , $78.90 ; \mathrm{H}, 10.59 \%$).
t- and c-2-Acetyl-1-methy-r-1-cyclobutaneacetic Acid 6a/b.A flask was charged with $\mathrm{CCl}_{4}\left(7.2 \mathrm{~cm}^{3}\right), \mathrm{MeCN}\left(7.2 \mathrm{~cm}^{3}\right)$, water ($7.2 \mathrm{~cm}^{3}$), compounds $5 \mathrm{a} / \mathrm{b}(2: 1)(206 \mathrm{mg}, 1.35 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(1.35 \mathrm{~g}, 6.3 \mathrm{mmol})$. To the mixture was added ruthenium trichloride hydrate ($25 \mathrm{mg}, \sim 0.12 \mathrm{mmol}$), and the reaction mixture was stirred vigorously for 1 h at room temperature. Water was added, and the mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{NaSO}_{4}\right)$ and concentrated. The resulting residue was diluted with diethyl ether, filtered through a Celite pad, and concentrated to give acids 6a/b (diastereoisomeric ratio 2:1 determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy) ($212 \mathrm{mg}, 93 \%$). Acids 6a/b: oil; b.p. $100-120^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ peaks for 6a: $1.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.62-2.04(3 \mathrm{H}, \mathrm{m}), 2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe})$, 2.26-2.45 ($1 \mathrm{H}, \mathrm{m}$), 2.605-2.612 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$), 3.23 (1 H , t-like, $J 8.3, \mathrm{CHCOMe})$ and $9.70\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right)$; peaks for 6b: 1.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.61-2.40 ($4 \mathrm{H}, \mathrm{m}$), 2.12 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 2.50-2.52 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$) $3.10(1 \mathrm{H}$, t-like, $J 8.2$, $\mathrm{CHCOMe})$ and $9.70\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(50.1 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ peaks for 6a: $16.78,21.27,30.15,30.53,41.19,46.76,53.48,177.6$ and 208.6; peaks for $\mathbf{6 b}$: $17.57,27.72,30.53,30.94,39.76,41.27$, $55.00,178.3$ and 209.6; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3200,2940,1700,1363$ and 1185; MS (70 eV) m / z (rel. int.) 170 (10), 124 (34), 111 (45), 71 (100) and 43 (84) (Found: $\mathrm{M}^{+}, 170.0934$. Calc. for $\mathrm{C}_{9} \mathrm{H}_{14}{ }^{-}$ $\mathrm{O}_{3}: \mathrm{M}, 170.0943$). The spectral data for acid $\mathbf{6 b}$ are in accord with the reported data. ${ }^{11 \mathrm{cce}}$
t - and $\mathrm{c}-2-$ Isopropenyl-1-methyl-r-1-cyclobutaneacetic Acid $7 \mathrm{a} / \mathrm{b}$. -Ice-cold $\mathrm{Zn}-\mathrm{CH}_{2} \mathrm{Br}_{2}-\mathrm{TiCl}_{4}$ reagent $\left(\sim 0.58 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$; $9.3 \mathrm{~cm}^{3}, 5.4 \mathrm{mmol}$), which was prepared according to the literature procedure, ${ }^{10 c}$ was added portionwise to a stirred solution of keto acids $\mathbf{6 a} / \mathbf{b}(2: 1)(157 \mathrm{mg}, 0.92 \mathrm{mmol})$ in dichloromethane ($8.2 \mathrm{~cm}^{3}$) at room temperature. The mixture was stirred for 1 h before being poured into a mixture of sodium hydrogen carbonate (24 g), water ($55 \mathrm{~cm}^{3}$) and diethyl ether (55
cm^{3}). The mixture was extracted with diethyl ether (~ 110 cm^{3}). The organic phase was washed with water and dried (MgSO_{4}). Removal of the solvent gave the crude product $\mathbf{7 a / b}$ (diastereoisomeric ratio $2: 1$ determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy) ($151 \mathrm{mg}, 98 \%$). The crude product can be used for the next reaction without further purification. Pure acids $7 \mathbf{a} / \mathbf{b}$ were obtained by column chromatography over silica gel and elution with hexane-diethyl ether (1:1) $\left(R_{\mathrm{f}} 0.5\right)$. Compounds $7 \mathbf{a} / \mathbf{b}$: oil; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ peaks for 7 a ; $1.04(3 \mathrm{H}, \mathrm{s}), 1.65(3 \mathrm{H}, \mathrm{s})$, $1.82-2.03(4 \mathrm{H}, \mathrm{m}), 2.50(2 \mathrm{H}, \mathrm{d}, J 2.0), 2.57-2.71(1 \mathrm{H}, \mathrm{m}), 4.61$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), $4.86(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ and $10.8(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; peaks for 7 b : $1.33(3 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s}), 1.74-2.08(4 \mathrm{H}, \mathrm{m}), 2.50-2.52(2 \mathrm{H}$, $\mathrm{m}), 2.59(1 \mathrm{H}, \mathrm{m}), 4.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.87(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ and $10.8(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}}\left(50.1 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ peaks for 7a: 19.61, 22.94, 30.15 , 40.46, 47.79, 49.83, 110.4, 144.9 and 178.8; peaks for 7b: 18.91, 23.17, 28.10, 29.16, 38.76, 41.36, 52.08, 110.5, 144.5 and 180.0 ; $\nu_{\max }($ neat $) / \mathrm{cm}^{-1} 3084,2970,2874,1711,1649,1444,1408,1379$ and 890 ; MS $(70 \mathrm{eV}) m / z$ (rel. int.) 168 (15), 153 (9), 125 (60), 108 (100) and 93 (49) (Found: M^{+}, 168.1106. Calc. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{M}, 168.1150$). The spectral data for acid 7 b are in accord with the reported data. ${ }^{11 c-e}$
(t-2-Isopropenyl-1-methyl-r-cyclobutyl)ethanol [(\pm)-Fragranol $] \mathbf{8 a}$.-Lithium aluminium hydride ($71 \mathrm{mg}, 1.84 \mathrm{mmol}$) was suspended in anhydrous diethyl ether ($7.0 \mathrm{~cm}^{3}$). A solution of acids $7 \mathbf{a} / \mathrm{b}(2: 1)(192 \mathrm{mg}, 1.4 \mathrm{mmol})$ in anhydrous diethyl ether $\left(3.9 \mathrm{~cm}^{3}\right)$ was slowly added to the stirred mixture, which was then stirred overnight at room temprature. Water was added to the stirred and ice-cooled mixture. The mixture was extracted with diethyl ether and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue (141 mg , 65%) was a (\pm)-fragranol $8 \mathbf{a}^{5}$ and (\pm)-grandisol $8 \mathbf{b b}^{11}(2: 1)$ mixture by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Compounds 8a/b: oil; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ peaks for 8a: $0.934(3 \mathrm{H}, \mathrm{s}), 1.36-1.46(2$ $\mathrm{H}, \mathrm{m}), 1.65(3 \mathrm{H}, \mathrm{d}, J 0.7), 1.75-2.04(5 \mathrm{H}, \mathrm{m}), 2.53-2.62(1 \mathrm{H}$, $\mathrm{m}), 3.69(2 \mathrm{H}, \mathrm{t}$-like, $J 7.6,2-\mathrm{H}), 4.62(1 \mathrm{H}, \mathrm{br}$ s) and $4.83(1 \mathrm{H}$, br s); peaks for 8b: $1.17(3 \mathrm{H}, \mathrm{s}), 1.26-2.04(7 \mathrm{H}, \mathrm{m}), 1.67(3 \mathrm{H}, \mathrm{s})$, $2.53(1 \mathrm{H}, \mathrm{m}), 3.67(2 \mathrm{H}, \mathrm{m}), 4.65(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ and $4.84(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. After column chromatography [silica gel; hexane-diethyl ether (1:1)] compound 8a (32 mg) was isolated (8a: $R_{\mathrm{f}} 0.45,8 \mathrm{~b}: R_{\mathrm{f}}$ 0.5). Compound 8a: oil; $\delta_{\mathrm{C}}\left(50.1 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 19.58, 19.84, $23.11,30.35,41.04,46.73,50.62,59.96,109.9$ and 145.7 ; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3302,2962,1647,1456,1377,1054$ and 886 ; MS (70 eV) m / z (rel. int.) 154 (4), 139 (18), 121 (67), 109 (100) and 93 (100).
r-2-Acetyl-r-1-methyl-t- and -c-1-(phenylseleno)cyclobutane Ethylene Ketal 9a/b.-A solution of compound 3a ($1.40 \mathrm{~g}, 5.25$ mmol), ethylene glycol ($756 \mathrm{mg}, 12.2 \mathrm{mmol}$), benzene ($58 \mathrm{~cm}^{3}$), and toluene- p-sulfonic acid (5.3 mg) was refluxed for 4.5 h in a round-bottomed flask equipped with a Dean-Stark trap and a condenser. The solution was cooled to room temperature, washed with saturated aq. NaHCO_{3} and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed and the residue was chromatographed on silica gel with hexane-diethyl ether $(2: 1)$ as eluent to give a $4: 1$ (determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy) isomeric mixture of ketals $9 \mathrm{a} / \mathrm{b}\left(1.41 \mathrm{~g}, 87 \%, R_{\mathrm{f}} 0.6\right)$.
When compound 3b ($927 \mathrm{mg}, 3.48 \mathrm{mmol}$) was used as the starting material, ketals $9 \mathbf{9 / b}(4: 1)(858 \mathrm{mg}, 80 \%)$ were obtained.

Ketals $9 \mathbf{9} / \mathbf{b}$: pale yellow oil; $\delta_{\mathrm{C}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) (peaks for the major isomer 9a) $1.32(3 \mathrm{H}, \mathrm{s}), 1.64(3 \mathrm{H}, \mathrm{s}), 1.72-2.00(3 \mathrm{H}$, $\mathrm{m}), 2.13-2.23(1 \mathrm{H}, \mathrm{m}), 2.72(1 \mathrm{H}, \mathrm{t}, J 9.0), 3.78-4.14(4 \mathrm{H}, \mathrm{m})$, 7.26-7.35 ($3 \mathrm{H}, \mathrm{m}$) and 7.60-7.64 $(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}(50.1 \mathrm{MHz}$; CDCl_{3}) (peaks for the major isomer 9a) 18.82, 23.17, 23.40, $34.50,48.22,51.35,63.84,65.68,109.7,128.4,128.5,128.9$ and 137.6; $\nu_{\max }$ (neat) $/ \mathrm{cm}^{-1} 2982,2882,1578,1477,1437$, 1373, 1044, 741 and 694; MS (70 eV) m / z (rel. int.) 312 (100), 269 (8), 235 (9), 225 (10), 198 (51), 157 (34), 111 (35) and

87 (100) (Found: $\mathrm{M}^{+}, 312.0594$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Se}$: M , 312.0629).
$\mathrm{r}-2$-Acetyl- t - and -c-1-allyl-1-methylcyclobutane Ethylene Ketal 10a/b (9:1).-The mixture of selenides 9a/b (4:1) (465 mg , 1.5 mmol), allyltributyltin ($1.49 \mathrm{~g}, 4.5 \mathrm{mmol}$) and AIBN (51 mg , 0.3 mmol) in benzene ($3.0 \mathrm{~cm}^{3}$) was refluxed for 4 h . After cooling, the solvent was removed under reduced pressure. The residue was purified by column chromatography over silica gel and eluted with hexane-diethyl ether ($4: 1$) to give ketals $10 \mathrm{a} / \mathrm{b}$ (diastereoisomeric ratio $9: 1$ determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy) ($141 \mathrm{mg}, 48 \%$) [$R_{\mathrm{f}} 0.75$ (hexane-diethyl ether, $2: 1$)]. Ketals 10a/b: oil; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ peaks for the major isomer 10a: $1.14(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{s}), 1.37-1.48(1 \mathrm{H}, \mathrm{m}), 1.63-$ $1.98(3 \mathrm{H}, \mathrm{m}), 2.14(2 \mathrm{H}, \mathrm{d}, J 7.7), 2.33(1 \mathrm{H}, \mathrm{t}$-like, $J 9.0), 3.82-$ $4.02(4 \mathrm{H}, \mathrm{m}), 5.01(1 \mathrm{H}, \mathrm{d}, J 18.7), 5.03(1 \mathrm{H}, \mathrm{d}, J 9.4)$ and $5.79(1$ H , tdd, $J 7.7,9.4$ and 18.7); $\delta_{\mathrm{C}}\left(50.1 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ peaks for the major isomer 10a: 17.74, 20.89, 23.67, 30.00, 41.25, 48.46, 49.65, 63.73, 65.39, 110.4, 116.7 and 135.5; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2980,2958$, 2880, 1640, 1371, 1046 and 913; MS (70 eV) m / z (rel. int.) 196 (4), 181 (41), 153 (95), 127 (26), 115 (38) and 99 (100) (Found: M^{+}, 196.1478. Calc. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{M}, 196.1463$).

Alternative Preparation of Ketones 5a/b (9:1).-A solution of ketals $10 \mathbf{a} / \mathbf{b}(9: 1)(113 \mathrm{mg}, 0.577 \mathrm{mmol})$ in dry dichloromethane $\left(5.7 \mathrm{~cm}^{3}\right)$ was treated with trityl tetrafluoroborate $(224 \mathrm{mg}$, 0.663 mmol) at $0^{\circ} \mathrm{C}$. After 30 min at $0^{\circ} \mathrm{C}$ the mixture was treated with aq. sodium hydrogen carbonate and was stirred for 10 min . The dichloromethane layer was separated, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by column chromatography over silica gel and eluted with hexane-diethyl ether (4:1) to give ketones 5a/b (9:1 determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy) ($61 \mathrm{mg}, 70 \%$).

Alternative Preparation of Keto Acids 6a/b (9:1).—A flask was charged with $\mathrm{CCl}_{4}\left(3 \mathrm{~cm}^{3}\right), \mathrm{MeCN}\left(3 \mathrm{~cm}^{3}\right)$, water $\left(3 \mathrm{~cm}^{3}\right)$, ketones $5 \mathrm{a} / \mathrm{b}(9: 1)(88 \mathrm{mg}, 0.58 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(783 \mathrm{mg}, 3.7$ mmol). To this mixture was added ruthenium trichloride hydrate ($11 \mathrm{mg}, \sim 0.052 \mathrm{mmol}$) and the reaction mixture was stirred vigorously for 1 h at room temperature. Water was then added, and the mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried $\left(\mathrm{NaSO}_{4}\right)$ and concentrated. The resulting residue was diluted with diethyl ether, filtered through a Celite pad, and concentrated to give keto acids 6a/b (9:1 determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy) ($98 \mathrm{mg}, 99 \%$).

Alternative Preparation of Acids 7a/b (9:1).-Ice-cold Zn $\mathrm{CH}_{2} \mathrm{Br}_{2}-\mathrm{TiCl}_{4}$ reagent ($\sim 0.58 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 5.8 \mathrm{~cm}^{3}, 3.3 \mathrm{mmol}$) was added portionwise to a stirred solution of keto acids $\mathbf{6 a / b}$ $(9: 1)(98 \mathrm{mg}, 0.58 \mathrm{mmol})$ in dichloromethane $\left(5.5 \mathrm{~cm}^{3}\right)$ at room temperature. The mixture was stirred for 1 h and was then poured into a mixture of sodium hydrogen carbonate (16 g), water ($37 \mathrm{~cm}^{3}$) and diethyl ether ($37 \mathrm{~cm}^{3}$). The mixture was extracted with diethyl ether $\left(\sim 74 \mathrm{~cm}^{3}\right)$. The organic phase was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was purified by column chromatography over silica gel and eluted with hexane-diethyl ether (1:1) to give acids $7 \mathbf{a} / \mathbf{b}$ ($9: 1$ determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy) ($67 \mathrm{mg}, 69 \%$).

Alternative Preparation of Alcohols 8a/b (9:1).- $\mathrm{LiAlH}_{4}-$ $\mathrm{Et}_{2} \mathrm{O}$ suspension ($\sim 1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 2 \mathrm{~cm}^{3}, 2 \mathrm{mmol}$) was slowly added to a stirred solution of acids $7 \mathbf{a} / \mathbf{b}(9: 1)(66 \mathrm{mg}, 0.392$ mmol) in anhydrous diethyl ether ($1.1 \mathrm{~cm}^{3}$). The mixture was stirred overnight at room temperature. Water was added to the stirred, ice-cooled mixture. The mixture was extracted with diethyl ether and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. Column chromatography [silica gel; hexane-diethyl ether (1:1)] of the residue gave (\pm)-fragranol 8a and (\pm)-grandisol 8 Bb (diastereoisomeric ratio

9:1 determined by GLC) as a mixture ($48 \mathrm{mg}, 75 \%$). GLC column [SUPELCOWAX-10 ($0.25 \mathrm{~mm} \times 30 \mathrm{~m}$)], column temp. $50-250^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C} \mathrm{min}^{-1} ; 8 \mathbf{a} t_{\mathrm{R}} 14.1 \mathrm{~min}, 8 \mathrm{~b} t_{\mathrm{R}} 14.0 \mathrm{~min}$.

Acknowledgements

We are grateful to Prof. I. Murata and Dr. K. Yamamoto (Osaka University) for measurement of NMR (400 MHz) spectra, mass spectra and elemental analysis. We also thank Prof. S. Yamabe for advice on PM3 calculations. MO calculations were performed on the CONVEX C-220 computer at the Information Processing Center of Nara University of Education. We thank Hayashi Memorial Foundation for Female Natural Scientists for generous financial support.

References

1 For reviews and some recent examples, see: for silicon: (a) J. S. Panek, in Comprehensive Organic Chemistry: Selectivity, Strategy and Efficiency in Modern Organic Chemistry, ed. S. L. Schreiber, Pergamon Press, Oxford, 1991, vol. 1, p. 579; (b) I. Fleming, J. Dunogues and R. Smithers, Org. React., 1989, 37, 57; (c) L. Birkofer and O. Stuhl, in The Chemistry of Organic Silicon Compounds, eds. S. Patai and Z. Rappoport, Wiley, New York, 1989, ch. 10; (d) E. W. Colvin, Silicon Reagents in Organic Synthesis, Academic Press, London, 1988; (e) K. Mikami, T.-P. Loh and T. Nakai, J. Am. Chem. Soc., 1990, 112, 6737; (f) B. M. Trost and H. Urabe, J. Am. Chem. Soc., 1990, 112, 4982; (g) A. G. Myers, K. L. Widdowson and P. J. Kukkola, J. Am. Chem. Soc., 1992, 114, 2765; (h) S. E. Denmark, M. A. Wallace and C. B. Walker, Jr., J. Org. Chem., 1990, 55, 5543; for sulfur: (i) B. M. Trost and A. C. Lavoie, J. Am. Chem. Soc., 1983, 105, 5075; (j) M. Terada, S. Mastukawa and K. Mikami, J. Chem. Soc., Chem. Commun., 1993, 327; (k) T. A. Blumenkopf, M. Bratz, A. Castañeda, G. C. Look, L. E. Overman, D. Rodriguez and A. S. Thompson, J. Am. Chem. Soc., 1990, 112, 4386; (l) K. Narasaka, Y. Hayashi, H. Shimadzu and S. Niihata, J. Am. Chem. Soc., 1992, 114, 8869; (m) P. Magnus and D. Quadliato, J. Org. Chem., 1985, 50, 1621; (n) M. E. Kraft, C. A. Juliano, I. L. Scott, C. Wright and M. D. McEachin, J. Am. Chem. Soc., 1991, 113, 1693; for tin: (o) M. Pereyre, J.-P. Quintard and A. Rahm, Tin in Organic Synthesis, Butterworths, London, 1987; (p) R. P. Bakale, M. A. Scialdon and C. R. Johnson, J. Am. Chem. Soc., 1990, 112, 6729; (q) M. R. Peel and C. R. Johnson, Tetrahedron Lett., 1986, 27, 5947.

2 For reviews, see: (a) Organoselenium Chemistry, ed. D. Liotta, Wiley, New York, 1987; (b) Selenium Reagents and Intermediates in Organic Synthesis, ed. C. Paulmier, Pergamon Press, Oxford, 1986; (c) Selenium in Natural Products Synthesis, ed. K. C. Nicolaou and N. A. Petasis, CIS, Inc., Philadelphia, 1984.
3 H. J. Reich, in ref. 2(a), p. 243; S. Danishefsky, C. F. Yan, R. K. Singh, R. B. Gammill, P. M. McCurry, Jr., N. Fritsch and J. Clardy, J. Am. Chem. Soc., 1979, 101, 7001; S. Yamazaki, M. Hama and S. Yamabe, Tetrahedron Lett., 1990, 31, 2917. See also ref. $1(j)$ and $1(l)$.
4 S. Yamazaki, H. Fujitsuka and S. Yamabe, J. Org. Chem., 1992, 57, 5610.

5 F. Bohlmann, C. Zdero and U. Faass, Chem. Ber., 1973, 106, 2904; J.-C. Grandguillot and F. Rouessac, Tetrahedron, 1991, 47, 5133.

6 B. Giese, Radicals in Organic Synthesis: Formation of CarbonCarbon Bonds, Pergamon Press, New York, 1986; D. P. Curran, in Comprehensive Organic Chemistry, Selectivity, Strategy and Efficiency in Modern Organic Chemistry, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 4, p. 417; T. Toru, Y. Yamada, T. Ueno, E. Maekawa and Y. Ueno, J. Am. Chem. Soc., 1988, 110, 4815.
7 J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209, 221.
8 J. J. P. Stewart, MOPAC, version 6, QCPE, program \# 455, Indiana University, October 1990.
9 M. Kosugi, K. Kunino, K. Takayama and T. Migita, J. Organomet. Chem., 1973, 56, C11; J. Grignon and M. Pereyre, J. Organomet. Chem., 1973, 61, C33; G. E. Keck and J. B. Yate, J. Am. Chem. Soc., 1982, 104, 5829.
10 (a) K. Oshima, K. Takai, Y. Hotta and H. Nozaki, Tetrahedron Lett., 1978, 2417; (b) K. Takai, Y. Hotta, K. Oshima and H. Nozaki, Bull. Chem. Soc. Jpn., 1980, 53, 1698; (c) L. Lombardo, Tetrahedron Lett., 1982, 23, 4293.

11 (a) J. H. Tumlinson, R. C. Gueldner, D. D. Hardee, A. C. Thompson, P. A. Hedin and J. P. Minyard, J. Org. Chem., 1971, 36, 2616; (b) For a review of the synthesis of grandisol, see: K. Mori, in The Total Synthesis of Natural Products, ed. J. ApSimon, Wiley, New York, 1981, vol. 4, p. 80; (c) R. Zurflüh, L. L. Dunham, V. L. Spain and J. B. Siddall, J. Am. Chem. Soc., 1970, 92, 425; (d) G. Rosini, E. Marotta, M. Petrini and R. Ballini, Tetrahedron, 1985, 41, 4633; (e) F. X. Webster and R. M. Silverstein, J. Org. Chem., 1986, 51, 5226; (f) K. Narasaka, H. Kusama and Y. Hayashi, Bull. Chem. Soc. Jpn., 1991, 64, 1471 and references cited therein.

12 D. H. Barton, P. D. Magnus, G. Smith and D. Zurr, Chem. Commun., 1971, 861; D. H. Barton, P. D. Magnus, G. Smith, G. Streckert and D. Zurr, J. Chem. Soc., Perkin Trans. I, 1972, 542.

13 E. Negishi, L. D. Boardman, J. M. Tour, H. Sawada and C. L. Rand, J. Am. Chem. Soc., 1983, 105, 6344.

Paper 3/05802F
Received 27th September 1993 Accepted 11 th November 1993

[^0]: \dagger Compounds 3a and 3b were separately treated with EtAlCl_{2} (1 mol equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(-78^{\circ} \mathrm{C} ; 3 \mathrm{~h}\right)$, followed by $\mathrm{Et}_{3} \mathrm{~N}$ work-up at the same temperature. Compound 3a gave the starting material with partial decomposition and formation of compound 3b was not detected. Compound 3b gave mainly the starting material with partial decomposition and a trace amount of compound 3a was detected. Therefore, equilibrium of diastereoisomers of $\mathbf{3 a}$ and $\mathbf{3 b}$ under the reaction conditions is unlikely.

